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Definition

Let µ be a Borel probability measure on Rd with compact support, µ is called a spectral

measure if there is a countable set Λ ⊂ Rd such that

E(Λ) =
{
e−2πi〈λ,x〉 : λ ∈ Λ

}
forms an orthonormal basis for L2(µ).

Spectral set Ω: L2(Ω) admits an orthonormal basis E(Λ).

Question: What measures µ are spectral?
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(He, Lai and Lau, 2013)

(Law of pure type) A spectral measure must be purely discrete, purely absolutely

continuous or purely singularly continuous w.r.t . Lebesgue measure.

Discrete case:

If µ =
∑
d∈D pdδd is spectral, then D must be finite and pd = 1

#D

(Dutkay and Lai, 2015)

If dµ = f(x)dx is spectral, then f(x) = 1Ω(x) a.e.

So the absolutely continuous case is reduced to Lebesgue measure.
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Fuglede’s conjecture: Ω is a spectral set if and only if Ω is a translational tile.

Tao generalized the Fuglede’s conjecture to the finite abelian group Zdn.

Based on the existence of a rational spectrum, the Fuglede’s conjecture for R and

Zn are equivalent.

What can we say for the case of singular continuous measure?
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The first singular spectral measure

Theorem (Jorgensen-Pedersen, 1998)

The 1
4
−Cantor measures µ4 := µ4,{0,2}

µ4(E) =
1

2
µ4(4E) +

1

2
µ4(4E − 2)

is a spectral measure. The 1
3
−Cantor measures µ3 := µ3,{0,2}

µ3(E) =
1

2
µ3(3E) +

1

2
µ3(3E − 2)

is NOT a spectral measure. Indeed, there are at most 2 mutually orthogonal

exponentials. Hence, there is no complete orthogonal exponentials in L2(µ3).
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(Hu-Lau, 2008; Dai, 2012)

Bernoulli measure µρ,{0,2} is spectral if and only if ρ−1 = 2q is an even integer.

From the measure-equation

µ4,{0,2}(E) =
1

2
µ4,{0,2}(4E) +

1

2
µ4,{0,2}(4E − 2),

we have

µ4,{0,2} = δ4−1{0,2} ∗ µ4(4·)

= δ4−1{0,2} ∗ δ4−2{0,2} ∗ δ4−3{0,2} ∗ · · ·

where δD = 1
#D

∑
d∈D δd. So

µ4,{0,2} ∗ µ4,{0,1} = µ4,{0,1,2,3} = L[0,1].
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Generalized Fuglede’s Conjecture

Conjecture (Gabardo-Lai, 2014)

A compactly supported Borel probability measure µ on Rd is spectral if and only if there

exists a Borel probability ν on Rd and a fundamental domain Q of some lattice on Rd

such that µ ∗ ν = LQ.

The generalized Fuglede’s Conjecture implies the classical Fuglede’s Conjecture

onR.

(A. and He; Lai and Gabadord): If µ ∗ ν = L[0,1], then both of µ and ν are

spectral.
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Key point: If µ ∗ ν = L[0,1], then they are random convolutions

µ = δ 1
b1
D1
∗ · · · ∗ δ 1

b1b2···b2k+1
D2k+1

∗ · · ·

ν = δ 1
b1b2

D2
∗ · · · ∗ δ 1

b1b2···b2k
D2k
∗ · · · ,

where Dk = {0, 1, · · · , Nk − 1} and Nk|bk.

The spectrality of random convolutions was first studied by Strichart (2000).

If all (bk, Dk) ≡ (b,D), then they are self-similar measure.
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Self-similar measures

Let b > 1 be an integer, D ⊂ Z be a finite set with cardinality N ,

a self-similar set

K(b,D) =
∞∑
k=1

b−kD.

a self-similar measure is

µb,D = δb−1D ∗ δb−2D ∗ δb−3D ∗ · · ·

[0, 1] is also a self-similar set as

[0, 1] =

∞∑
k=1

2−k{0, 1}.

and L[0,1] is a self-similar measure.
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(Deng and Chen, 2022): For any integer-pair (b,D), if µb,D is a spectral measure,

then the OSC holds.

(Shief) If the OSC holds, then dimH = lnN
ln b

and

0 < H
lnN
ln b

(
K(b,D)

)
<∞,

If µb,D is a spectral measure, then it is the nomalized lnN
ln b

-Hausdorff measure

supported on K(b,D),

µb,D =
1

H lnN
ln b (K(b,D))

H
lnN
ln b |K(b,D).
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Fuglede’s conjecture for self-similar measures
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Suppose #D = b, K(b,D) is called a self-similar tile if it has positive Lebesgue

measure.

(Lagarias and Wang, 1996): A self-similar tile must be a translational tile

Twin dragon tile

A =

(
1 −1

1 1

)
, D =

{(
0

0

)
,

(
1

0

)}
.
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Self-similar tile on R

(Lagarias and Wang, 1996): Suppose 0 ∈ D ⊂ R with #D = b

K(b,D) is a self-similar tile ⇒ αD ⊂ Z for some α 6= 0.

K(b,D) is a self-similar tile with 0 ∈ D ⊂ Z
⇔ the sum Db,k := D + bD + · · ·+ bkD is direct for each k ≥ 1;

⇒ each iteration Db,k = D ⊕ bD ⊕ · · · ⊕ bkD is an integer tile.
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Spectral measure ⇒ Tile

Theorem

Suppose D ⊂ Z with #D = b, if µb,D is a spectral measure, then K(b,D) is a

self-similar tile.

Proof Sketch:

Suppose 0 ∈ D ⊂ Z with #D = b and gcd(D) = 1.

µb,D is a spectral measure

⇒ OSC (Deng and Chen, 2022)

⇔ the sum Db,k = D + bD + · · ·+ bk−1D is direct for each k ≥ 1;

(He and Lau, 2008)

⇔ K(b,D) is a self-similar tile (Lagarias and Wang, 1996).
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Tile ⇒ Spectral measure

(Fu, He and Lau, 2015): strict product-form digit

Theorem (A. and Lai, 2023; Li and Rao, 2025+)

Suppose C-M’s conjecture is true. If K(b,D) is a self-similar tile, then it is a spectral set.

Question: For the singularly continuous case (#D < b), how about the spectral

measures-tiling connection?
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( Laba and Wang, 2002):

Let D be a complementing set (mod b) with b ≥ 1. Suppose that #D has no

more than two distinct prime factors. Then µb,D is a spectral measure

Key point 1: D is a complementing set (mod b), it means D tiles Zb, i.e., there

exists a C ⊂ Z such that

D ⊕ C ≡ {0, 1, · · · , b− 1} (mod b).

In this case, K(b,D ⊕ C) is a fundamental domain of Z and of course it is a tile.

Then

µb,D ∗ µb,C = LK(b,D⊕C).

Key point 2: #D has no more than two distinct prime factors. In this case, the

Coven-Meyerowitz conjecture is true: tiles D of finite group Zb is spectral ( Laba).
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We say K(b,D) weakly tiles a self-similar set if there is a C ⊂ Z such that

K(b,D ⊕ C) forms a self-similar tile.

Theorem (A. and He, preprint)

Suppose that the C-M conjecture is true and K(b,D) weakly tiles a self-similar set, then

µb,D is a spectral measure.

For which pair (b,D), K(b,D) can weakly tile a self-similar set?

D tiles Zb
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Question: If D tiles Z (or Zbn), can K(b,D) weakly tile a self-similar set?

Answer: : Might NOT!

(1) D = {0, 1, 32, 33} = {0, 1}+ 16{0, 2} tiles Z162 , YES.

(2) D̃ = {0, 1, 16, 17} = {0, 1}+ 16{0, 1} tiles Z162 , NO;

Denote Db,k = D + bD + · · ·+ bk−1D, then

K(b,D) =

∞∑
k=1

b−kD = K(bk, Db,k).

each D ⊕ 16D tiles Z, and so is D ⊕ · · · ⊕ 16k−1D for each k ≥ 1.

but D̃ + 16D̃ is not a direct summand.
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Suppose D ⊂ Z, we call D an iterated integer tile with respect to b if for each

k ≥ 1, the sum

Db,k := D + bD + · · ·+ bk−1D

is direct and tiles Z.

Theorem (A. and He, preprint)

T (b,D) weakly tiles a self-similar set if and only if D is an iterated integer tile with

respect to b

Some remarks:

If D tiles Zb, then it is an iterated integer tile with respect to b.

D is an integer tile and the sum in Db,k is direct ; each Db,k is an integer tile

e.g. b = 3, D = {0, 1} ( 1
3
−Cantor measure µb,{0,1}).
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Spectral ⇒ Tile

( Laba and Wang, 2002) conjecture that:

For any integer-pair (b,D), if µb,D is spectral, then D is an integer tile.

Recall that

µb,D = δb−1D ∗ δb−2D ∗ δb−3D ∗ · · ·

= δb−k(D+bD+···+bk−1D) ∗ δb−2k(D+bD+···+bk−1D)

= µbk,Db,k

 Laba-Wang conjecture: if µb,D is spectral, then D is an iterated integer tile.

It is still open!
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Suppose 0 ∈ Λ is a spectrum of µb,D

The orthogonality implies that µ̂b,D(λ) = 0 for any nonzero elements λ ∈ Λ, that

is to say

Λ \ {0} ⊂ Z(µ̂b,D) =
∞⋃
k=1

bkZ(δ̂D)

where Z(f) := {ξ : f(ξ) = 0}.

Theorem (A. and He, 2025+)

Suppose D ⊂ Z with Z(δ̂D) ⊂ 1
pq

(Z \ Z) where p, q are primes, then the following are

equivalent: (1)µb,D is a spectral measure;

(2) D is an iterated integer tile;

(3) K(b,D) can weakly tile a self-similar set.

(the generalized Fuglede’s conjecture is true for this measure.)
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Structure of the iterated integer tile
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Theorem (A. and He, preprint)

T (b,D) weakly tiles a self-similar set if and only if D is an iterated integer tile with

respect to b

Question: for which pair (b,D), is T (b,D) a self-similar tile?

The known results

b = p, p is a prime number (Bandt, 1991; Kenyon, 1992)

b = pk+1, p is a prime number (Lagarias and Wang, 1996)

b = pq, p, q are different prime numbers (Lau and Rao, 2003)

b = pαq, p, q are different prime numbers (Lai, Lau and Rao, 2017)
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(Bandt, 1991): If D is a complete residue set mod b and gcd(D) = 1, then

K(b,D) is a fundamental domain of Z;

(Odlyzko, 1978; Lagarias and Wang, 1996)

Strict product-form: Given E = E0 ⊕ · · · ⊕ Ek = {0, 1, · · · , b− 1},

D = E0 ⊕ b`1E1 ⊕ · · · ⊕ b`kEk, 0 ≤ `1 ≤ · · · ≤ `k.

In this case,

T (b,D) =
∞∑
j=1

b−j
(
E0 ⊕ b`1E1 ⊕ · · · ⊕ b`kEk

)
= T (b, E)⊕A

= [0, 1] +A.
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Theorem (A. and Lau, 2019)

Suppose A = pI2, p is prime and D ⊂ Z2 with (A,D) is primitive. K(A,D) is a

self-similar tile if and only if

D =
⋃
d∈D0

(
d+AkBd

)
,

where k ≥ 1 and D0 ⊕Bd is a complete residue set modulus A for every d ∈ D0.

(Li and Rao, 2025+) named it as skew-product-form digit set with respect to A

Suppose 0 ∈ D ⊂ Z with #D = b and gcd(D) = 1. Then T (b,D) is a self-similar

tile if and only if there is a k ≥ 1 such that Db,k is a skew-product-form digit set

with respect to b.
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the case #D ≤ b

Quasi-product-form digit set with respect to b if

D =
⋃
a∈A

(a+ bBa) ,

and A⊕Ba tiles Zb.

Theorem (A. and He, preprint)

Suppose 0 ∈ D ⊂ Z with #D ≤ b and gcd(D) = 1. Then D is an iterated integer tile

w.r.t b if and only if there is a k ≥ 1 and α > 0 such that α ·Db,k is a

quasi-product-form digit set.
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Thank you for your attention!
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