Iterated integer tiles and self-similar spectral measures

Lixiang An
Central China Normal University
Joint work with Tingting He

International Conference on Tiling and Fourier Bases
Xidian University

September 2025

Overview

Backgrounds

2 Fuglede's conjecture for self-similar measure

3 Structure of iterated integer tile

Backgrounds

Definition

Let μ be a Borel probability measure on \mathbb{R}^d with compact support, μ is called a spectral measure if there is a countable set $\Lambda \subset \mathbb{R}^d$ such that

$$E(\Lambda) = \left\{ e^{-2\pi i \langle \lambda, x \rangle} : \lambda \in \Lambda \right\}$$

forms an orthonormal basis for $L^2(\mu)$.

- Spectral set Ω : $L^2(\Omega)$ admits an orthonormal basis $E(\Lambda)$.
- Question: What measures μ are spectral?

Definition

Let μ be a Borel probability measure on \mathbb{R}^d with compact support, μ is called a spectral measure if there is a countable set $\Lambda \subset \mathbb{R}^d$ such that

$$E(\Lambda) = \left\{ e^{-2\pi i \langle \lambda, x \rangle} : \lambda \in \Lambda \right\}$$

forms an orthonormal basis for $L^2(\mu)$.

- Spectral set Ω : $L^2(\Omega)$ admits an orthonormal basis $E(\Lambda)$.
- Question: What measures μ are spectral?

(International Conference on Tiling and Fourilterated integer tiles and self-similar spectral i

September 2025

Definition

Let μ be a Borel probability measure on \mathbb{R}^d with compact support, μ is called a spectral measure if there is a countable set $\Lambda \subset \mathbb{R}^d$ such that

$$E(\Lambda) = \left\{ e^{-2\pi i \langle \lambda, x \rangle} : \lambda \in \Lambda \right\}$$

forms an orthonormal basis for $L^2(\mu)$.

- Spectral set Ω : $L^2(\Omega)$ admits an orthonormal basis $E(\Lambda)$.
- Question: What measures μ are spectral?

• (He, Lai and Lau, 2013)

(Law of pure type) A spectral measure must be purely discrete, purely absolutely continuous or purely singularly continuous w.r.t . Lebesgue measure.

Discrete case:

If
$$\mu = \sum_{d \in D} p_d \delta_d$$
 is spectral, then D must be finite and $p_d = \frac{1}{\# L}$

• (Dutkay and Lai, 2015)

If
$$d\mu=f(x)dx$$
 is spectral, then $f(x)=\mathbf{1}_{\Omega}(x)$ a.e.

So the absolutely continuous case is reduced to Lebesgue measure.

• (He, Lai and Lau, 2013)

(Law of pure type) A spectral measure must be purely discrete, purely absolutely continuous or purely singularly continuous w.r.t . Lebesgue measure.

Discrete case:

If
$$\mu = \sum_{d \in D} p_d \delta_d$$
 is spectral, then D must be finite and $p_d = \frac{1}{\# D}$

• (Dutkay and Lai, 2015)

If
$$d\mu = f(x)dx$$
 is spectral, then $f(x) = \mathbf{1}_{\Omega}(x)$ a.e.

So the absolutely continuous case is reduced to Lebesgue measure.

(International Conference on Tiling and Fourilterated integer tiles and self-similar spectral i

September 2025

• (He, Lai and Lau, 2013)

(Law of pure type) A spectral measure must be purely discrete, purely absolutely continuous or purely singularly continuous w.r.t . Lebesgue measure.

Discrete case:

If
$$\mu = \sum_{d \in D} p_d \delta_d$$
 is spectral, then D must be finite and $p_d = \frac{1}{\# D}$

• (Dutkay and Lai, 2015)

If
$$d\mu = f(x)dx$$
 is spectral, then $f(x) = \mathbf{1}_{\Omega}(x)$ a.e.

So the absolutely continuous case is reduced to Lebesgue measure.

- \bullet Fuglede's conjecture: Ω is a spectral set if and only if Ω is a translational tile.
 - Tao generalized the Fuglede's conjecture to the finite abelian group \mathbb{Z}_n^d . Based on the existence of a rational spectrum, the Fuglede's conjecture for \mathbb{R} and \mathbb{Z}_n are equivalent.
- What can we say for the case of singular continuous measure?

- Fuglede's conjecture: Ω is a spectral set if and only if Ω is a translational tile. Tao generalized the Fuglede's conjecture to the finite abelian group \mathbb{Z}_n^d . Based on the existence of a rational spectrum, the Fuglede's conjecture for \mathbb{R} and \mathbb{Z}_n are equivalent.
- What can we say for the case of singular continuous measure?

- Fuglede's conjecture: Ω is a spectral set if and only if Ω is a translational tile. Tao generalized the Fuglede's conjecture to the finite abelian group \mathbb{Z}_n^d . Based on the existence of a rational spectrum, the Fuglede's conjecture for \mathbb{R} and \mathbb{Z}_n are equivalent.
- What can we say for the case of singular continuous measure

- Fuglede's conjecture: Ω is a spectral set if and only if Ω is a translational tile. Tao generalized the Fuglede's conjecture to the finite abelian group \mathbb{Z}_n^d . Based on the existence of a rational spectrum, the Fuglede's conjecture for \mathbb{R} and \mathbb{Z}_n are equivalent.
- What can we say for the case of singular continuous measure?

The first singular spectral measure

Theorem (Jorgensen-Pedersen, 1998)

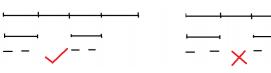
The $\frac{1}{4}$ -Cantor measures $\mu_4:=\mu_{4,\{0,2\}}$

$$\mu_4(E) = \frac{1}{2}\mu_4(4E) + \frac{1}{2}\mu_4(4E - 2)$$

is a spectral measure. The $rac{1}{3}-$ Cantor measures $\mu_3:=\mu_{3,\{0,2\}}$

$$\mu_3(E) = \frac{1}{2}\mu_3(3E) + \frac{1}{2}\mu_3(3E-2)$$

is NOT a spectral measure. Indeed, there are at most 2 mutually orthogonal exponentials. Hence, there is no complete orthogonal exponentials in $L^2(\mu_3)$.



The first singular spectral measure

Theorem (Jorgensen-Pedersen, 1998)

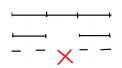
The $\frac{1}{4}$ -Cantor measures $\mu_4:=\mu_{4,\{0,2\}}$

$$\mu_4(E) = \frac{1}{2}\mu_4(4E) + \frac{1}{2}\mu_4(4E - 2)$$

is a spectral measure. The $rac{1}{3}-$ Cantor measures $\mu_3:=\mu_{3,\{0,2\}}$

$$\mu_3(E) = \frac{1}{2}\mu_3(3E) + \frac{1}{2}\mu_3(3E-2)$$

is NOT a spectral measure. Indeed, there are at most 2 mutually orthogonal exponentials. Hence, there is no complete orthogonal exponentials in $L^2(\mu_3)$.



- (Hu-Lau, 2008; Dai, 2012) Bernoulli measure $\mu_{
 ho,\{0,2\}}$ is spectral if and only if $ho^{-1}=2q$ is an even integer.
- From the measure-equation

$$\mu_{4,\{0,2\}}(E) = \frac{1}{2}\mu_{4,\{0,2\}}(4E) + \frac{1}{2}\mu_{4,\{0,2\}}(4E-2)$$

$$\mu_{4,\{0,2\}} = \delta_{4^{-1}\{0,2\}} * \mu_{4}(4\cdot)$$

$$= \delta_{4^{-1}\{0,2\}} * \delta_{4^{-2}\{0,2\}} * \delta_{4^{-3}\{0,2\}} * \cdots$$

where $\delta_D = \frac{1}{\#D} \sum_{d \in D} \delta_d$. So

$$\mu_{4,\{0,2\}} * \mu_{4,\{0,1\}} = \mu_{4,\{0,1,2,3\}} = \mathcal{L}_{[0,1]}.$$

- (Hu-Lau, 2008; Dai, 2012) Bernoulli measure $\mu_{\rho,\{0,2\}}$ is spectral if and only if $\rho^{-1}=2q$ is an even integer.
- From the measure-equation

$$\mu_{4,\{0,2\}}(E) = \frac{1}{2}\mu_{4,\{0,2\}}(4E) + \frac{1}{2}\mu_{4,\{0,2\}}(4E-2),$$

$$\begin{array}{rcl} \mu_{4,\{0,2\}} & = & \delta_{4^{-1}\{0,2\}} * \mu_{4}(4 \cdot) \\ \\ & = & \delta_{4^{-1}\{0,2\}} * \delta_{4^{-2}\{0,2\}} * \delta_{4^{-3}\{0,2\}} * \cdots \end{array}$$

where $\delta_D = \frac{1}{\# D} \sum_{d \in D} \delta_d$. So

$$\mu_{4,\{0,2\}} * \mu_{4,\{0,1\}} = \mu_{4,\{0,1,2,3\}} = \mathcal{L}_{[0,1]}.$$

4□ → 4□ → 4 = → 4 = → 9 Q P

- (Hu-Lau, 2008; Dai, 2012) Bernoulli measure $\mu_{\rho,\{0,2\}}$ is spectral if and only if $\rho^{-1}=2q$ is an even integer.
- From the measure-equation

$$\mu_{4,\{0,2\}}(E) = \frac{1}{2}\mu_{4,\{0,2\}}(4E) + \frac{1}{2}\mu_{4,\{0,2\}}(4E-2),$$

$$\begin{array}{rcl} \mu_{4,\{0,2\}} & = & \delta_{4^{-1}\{0,2\}} * \mu_{4}(4 \cdot) \\ \\ & = & \delta_{4^{-1}\{0,2\}} * \delta_{4^{-2}\{0,2\}} * \delta_{4^{-3}\{0,2\}} * \cdots \end{array}$$

where $\delta_D = \frac{1}{\# D} \sum_{d \in D} \delta_d$. So

$$\mu_{4,\{0,2\}} * \mu_{4,\{0,1\}} = \mu_{4,\{0,1,2,3\}} = \mathcal{L}_{[0,1]}.$$

4□ → 4□ → 4 = → 4 = → 9 Q P

- (Hu-Lau, 2008; Dai, 2012) Bernoulli measure $\mu_{\rho,\{0,2\}}$ is spectral if and only if $\rho^{-1}=2q$ is an even integer.
- From the measure-equation

$$\mu_{4,\{0,2\}}(E) = \frac{1}{2}\mu_{4,\{0,2\}}(4E) + \frac{1}{2}\mu_{4,\{0,2\}}(4E-2),$$

$$\begin{array}{rcl} \mu_{4,\{0,2\}} & = & \delta_{4^{-1}\{0,2\}} * \mu_{4}(4 \cdot) \\ \\ & = & \delta_{4^{-1}\{0,2\}} * \delta_{4^{-2}\{0,2\}} * \delta_{4^{-3}\{0,2\}} * \cdots \end{array}$$

where $\delta_D = \frac{1}{\# D} \sum_{d \in D} \delta_d$. So

$$\mu_{4,\{0,2\}} * \mu_{4,\{0,1\}} = \mu_{4,\{0,1,2,3\}} = \mathcal{L}_{[0,1]}.$$

◄□▶
□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

(International Conference on Tiling and Fourilterated integer tiles and self-similar spectral

September 2025

Generalized Fuglede's Conjecture

Conjecture (Gabardo-Lai, 2014)

A compactly supported Borel probability measure μ on \mathbb{R}^d is spectral if and only if there exists a Borel probability ν on \mathbb{R}^d and a fundamental domain Q of some lattice on \mathbb{R}^d such that $\mu * \nu = \mathcal{L}_Q$.

- The generalized Fuglede's Conjecture implies the classical Fuglede's Conjecture on R.
- (A. and He; Lai and Gabadord): If $\mu * \nu = \mathcal{L}_{[0,1]}$, then both of μ and ν are spectral.

Generalized Fuglede's Conjecture

Conjecture (Gabardo-Lai, 2014)

A compactly supported Borel probability measure μ on \mathbb{R}^d is spectral if and only if there exists a Borel probability ν on \mathbb{R}^d and a fundamental domain Q of some lattice on \mathbb{R}^d such that $\mu * \nu = \mathcal{L}_Q$.

- The generalized Fuglede's Conjecture implies the classical Fuglede's Conjecture on R.
- (A. and He; Lai and Gabadord): If $\mu * \nu = \mathcal{L}_{[0,1]}$, then both of μ and ν are spectral.

Generalized Fuglede's Conjecture

Conjecture (Gabardo-Lai, 2014)

A compactly supported Borel probability measure μ on \mathbb{R}^d is spectral if and only if there exists a Borel probability ν on \mathbb{R}^d and a fundamental domain Q of some lattice on \mathbb{R}^d such that $\mu * \nu = \mathcal{L}_Q$.

- The generalized Fuglede's Conjecture implies the classical Fuglede's Conjecture on R.
- (A. and He; Lai and Gabadord): If $\mu * \nu = \mathcal{L}_{[0,1]}$, then both of μ and ν are spectral.

• Key point: If $\mu * \nu = \mathcal{L}_{[0,1]}$, then they are random convolutions

$$\mu=\delta_{\frac{1}{b_1}D_1}*\cdots*\delta_{\frac{1}{b_1b_2\cdots b_{2k+1}}D_{2k+1}}*\cdots$$

$$\nu=\delta_{\frac{1}{b_1b_2}D_2}*\cdots*\delta_{\frac{1}{b_1b_2\cdots b_{2k}}D_{2k}}*\cdots,$$
 where $D_k=\{0,1,\cdots,N_k-1\}$ and $N_k|b_k.$

- The spectrality of random convolutions was first studied by Strichart (2000).
- If all $(b_k, D_k) \equiv (b, D)$, then they are self-similar measure.

• Key point: If $\mu * \nu = \mathcal{L}_{[0,1]}$, then they are random convolutions

$$\mu = \delta_{\frac{1}{b_1}D_1} * \cdots * \delta_{\frac{1}{b_1b_2\cdots b_{2k+1}}D_{2k+1}} * \cdots$$

$$\nu = \delta_{\frac{1}{b_1b_2}D_2} * \cdots * \delta_{\frac{1}{b_1b_2\cdots b_{2k}}D_{2k}} * \cdots ,$$

$$N_{b_1, b_2} \text{ and } N_b|_{b_1}$$

where $D_k = \{0, 1, \cdots, N_k - 1\}$ and $N_k | b_k$.

- The spectrality of random convolutions was first studied by Strichart (2000).
- If all $(b_k, D_k) \equiv (b, D)$, then they are self-similar measure.

• Key point: If $\mu * \nu = \mathcal{L}_{[0,1]}$, then they are random convolutions

$$\mu = \delta_{\frac{1}{b_1}D_1} * \cdots * \delta_{\frac{1}{b_1b_2\cdots b_{2k+1}}D_{2k+1}} * \cdots$$

$$\nu = \delta_{\frac{1}{b_1b_2}D_2} * \cdots * \delta_{\frac{1}{b_1b_2\cdots b_{2k}}D_{2k}} * \cdots ,$$

where $D_k = \{0, 1, \cdots, N_k - 1\}$ and $N_k | b_k$.

- The spectrality of random convolutions was first studied by Strichart (2000).
- If all $(b_k, D_k) \equiv (b, D)$, then they are self-similar measure.

Self-similar measures

• Let b>1 be an integer, $D\subset \mathbb{Z}$ be a finite set with cardinality N, a self-similar set

$$K(b,D) = \sum_{k=1}^{\infty} b^{-k} D.$$

a self-similar measure is

$$\mu_{b,D} = \delta_{b^{-1}D} * \delta_{b^{-2}D} * \delta_{b^{-3}D} * \cdots$$

 \bullet [0,1] is also a self-similar set as

$$[0,1] = \sum_{k=1}^{\infty} 2^{-k} \{0,1\}.$$

and $\mathcal{L}_{\text{f0-11}}$ is a self-similar measure.

Self-similar measures

• Let b>1 be an integer, $D\subset \mathbb{Z}$ be a finite set with cardinality N, a self-similar set

$$K(b,D) = \sum_{k=1}^{\infty} b^{-k} D.$$

a self-similar measure is

$$\mu_{b,D} = \delta_{b^{-1}D} * \delta_{b^{-2}D} * \delta_{b^{-3}D} * \cdots$$

 \bullet [0,1] is also a self-similar set as

$$[0,1] = \sum_{k=1}^{\infty} 2^{-k} \{0,1\}.$$

and $\mathcal{L}_{[0,1]}$ is a self-similar measure.

- (Deng and Chen, 2022): For any integer-pair (b, D), if $\mu_{b,D}$ is a spectral measure, then the OSC holds.
- \bullet (Shief) If the OSC holds, then $\dim_H = \frac{\ln N}{\ln b}$ and

$$0 < \mathcal{H}^{\frac{\ln N}{\ln b}} \Big(K(b, D) \Big) < \infty,$$

• If $\mu_{b,D}$ is a spectral measure, then it is the nomalized $\frac{\ln N}{\ln b}$ -Hausdorff measure supported on K(b,D),

$$\mu_{b,D} = \frac{1}{\mathcal{H}^{\frac{\ln N}{\ln b}}(K(b,D))} \mathcal{H}^{\frac{\ln N}{\ln b}}|_{K(b,D)}.$$

- (Deng and Chen, 2022): For any integer-pair (b, D), if $\mu_{b,D}$ is a spectral measure, then the OSC holds.
- \bullet (Shief) If the OSC holds, then $\dim_H = \frac{\ln N}{\ln b}$ and

$$0 < \mathcal{H}^{\frac{\ln N}{\ln b}} \Big(K(b, D) \Big) < \infty,$$

• If $\mu_{b,D}$ is a spectral measure, then it is the nomalized $\frac{\ln N}{\ln b}$ -Hausdorff measure supported on K(b,D),

$$\mu_{b,D} = \frac{1}{\mathcal{H}^{\frac{\ln N}{\ln b}}(K(b,D))} \mathcal{H}^{\frac{\ln N}{\ln b}}|_{K(b,D)}.$$

- (Deng and Chen, 2022): For any integer-pair (b, D), if $\mu_{b,D}$ is a spectral measure, then the OSC holds.
- ullet (Shief) If the OSC holds, then $\dim_H = \frac{\ln N}{\ln b}$ and

$$0 < \mathcal{H}^{\frac{\ln N}{\ln b}} \Big(K(b, D) \Big) < \infty,$$

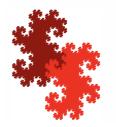
• If $\mu_{b,D}$ is a spectral measure, then it is the nomalized $\frac{\ln N}{\ln b}$ -Hausdorff measure supported on K(b,D),

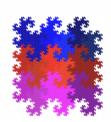
$$\mu_{b,D} = \frac{1}{\mathcal{H}^{\frac{\ln N}{\ln b}}(K(b,D))} \mathcal{H}^{\frac{\ln N}{\ln b}}|_{K(b,D)}.$$

Fuglede's conjecture for self-similar measures

- Suppose #D=b, K(b,D) is called a self-similar tile if it has positive Lebesgue measure.
- (Lagarias and Wang, 1996): A self-similar tile must be a translational tile
- Twin dragon tile

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \quad D = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}.$$





Self-similar tile on $\mathbb R$

(Lagarias and Wang, 1996): Suppose $0 \in D \subset \mathbb{R}$ with #D = b

- K(b,D) is a self-similar tile $\Rightarrow \alpha \mathcal{D} \subset \mathbb{Z}$ for some $\alpha \neq 0$.
- K(b,D) is a self-similar tile with $0 \in D \subset \mathbb{Z}$
 - \Leftrightarrow the sum $D_{b,k} := D + bD + \cdots + b^k D$ is direct for each $k \ge 1$
 - \Rightarrow each iteration $D_{b,k} = D \oplus bD \oplus \cdots \oplus b^kD$ is an integer tile

Self-similar tile on $\mathbb R$

(Lagarias and Wang, 1996): Suppose $0 \in D \subset \mathbb{R}$ with #D = b

- K(b,D) is a self-similar tile $\Rightarrow \alpha \mathcal{D} \subset \mathbb{Z}$ for some $\alpha \neq 0$.
- K(b,D) is a self-similar tile with $0 \in D \subset \mathbb{Z}$
 - \Leftrightarrow the sum $D_{b,k} := D + bD + \cdots + b^kD$ is direct for each $k \ge 1$;
 - \Rightarrow each iteration $D_{b,k} = D \oplus bD \oplus \cdots \oplus b^kD$ is an integer tile.

Spectral measure \Rightarrow Tile

Theorem

Suppose $D \subset \mathbb{Z}$ with $\#\mathcal{D} = b$, if $\mu_{b,D}$ is a spectral measure, then K(b,D) is a self-similar tile.

Proof Sketch:

- Suppose $0 \in D \subset \mathbb{Z}$ with $\#\mathcal{D} = b$ and $\gcd(D) = 1$.
- $\mu_{b,D}$ is a spectral measure
 - \Rightarrow OSC (Deng and Chen, 2022)
 - \Leftrightarrow the sum $D_{b,k} = D + bD + \cdots + b^{k-1}D$ is direct for each $k \ge 1$; (He and Lau, 2008)
 - $\Leftrightarrow K(b,D)$ is a self-similar tile (Lagarias and Wang, 1996).

Spectral measure \Rightarrow Tile

Theorem

Suppose $D \subset \mathbb{Z}$ with $\#\mathcal{D} = b$, if $\mu_{b,D}$ is a spectral measure, then K(b,D) is a self-similar tile.

Proof Sketch:

- Suppose $0 \in D \subset \mathbb{Z}$ with $\#\mathcal{D} = b$ and gcd(D) = 1.
- ullet $\mu_{b,D}$ is a spectral measure
 - ⇒ OSC (Deng and Chen, 2022)
 - \Leftrightarrow the sum $D_{b,k}=D+bD+\cdots+b^{k-1}D$ is direct for each $k\geq 1$; (He and Lau, 2008)
 - $\Leftrightarrow K(b,D)$ is a self-similar tile (Lagarias and Wang, 1996).

Spectral measure \Rightarrow Tile

Theorem

Suppose $D \subset \mathbb{Z}$ with $\#\mathcal{D} = b$, if $\mu_{b,D}$ is a spectral measure, then K(b,D) is a self-similar tile.

Proof Sketch:

- Suppose $0 \in D \subset \mathbb{Z}$ with $\#\mathcal{D} = b$ and gcd(D) = 1.
- ullet $\mu_{b,D}$ is a spectral measure
 - \Rightarrow OSC (Deng and Chen, 2022)
 - \Leftrightarrow the sum $D_{b,k} = D + bD + \cdots + b^{k-1}D$ is direct for each $k \ge 1$; (He and Lau, 2008)
 - $\Leftrightarrow K(b,D)$ is a self-similar tile (Lagarias and Wang, 1996).

Spectral measure \Rightarrow Tile

Theorem

Suppose $D \subset \mathbb{Z}$ with $\#\mathcal{D} = b$, if $\mu_{b,D}$ is a spectral measure, then K(b,D) is a self-similar tile.

Proof Sketch:

- Suppose $0 \in D \subset \mathbb{Z}$ with $\#\mathcal{D} = b$ and gcd(D) = 1.
- ullet $\mu_{b,D}$ is a spectral measure
 - \Rightarrow OSC (Deng and Chen, 2022)
 - \Leftrightarrow the sum $D_{b,k} = D + bD + \cdots + b^{k-1}D$ is direct for each $k \ge 1$; (He and Lau, 2008)
 - $\Leftrightarrow K(b,D)$ is a self-similar tile (Lagarias and Wang, 1996).

Tile \Rightarrow Spectral measure

• (Fu, He and Lau, 2015): strict product-form digit

Theorem (A. and Lai, 2023; Li and Rao, 2025+)

Suppose C-M's conjecture is true. If K(b,D) is a self-similar tile, then it is a spectral set

Question: For the singularly continuous case (#D < b), how about the spectral measures-tiling connection?

Tile \Rightarrow Spectral measure

• (Fu, He and Lau, 2015): strict product-form digit

Theorem (A. and Lai, 2023; Li and Rao, 2025+)

Suppose C-M's conjecture is true. If K(b,D) is a self-similar tile, then it is a spectral set.

Question: For the singularly continuous case (#D < b), how about the spectral measures-tiling connection?

Tile \Rightarrow Spectral measure

• (Fu, He and Lau, 2015): strict product-form digit

Theorem (A. and Lai, 2023; Li and Rao, 2025+)

Suppose C-M's conjecture is true. If K(b,D) is a self-similar tile, then it is a spectral set.

Question: For the singularly continuous case (#D < b), how about the spectral measures-tiling connection?

• (Laba and Wang, 2002):

Let D be a complementing set \pmod{b} with $b \ge 1$. Suppose that #D has no more than two distinct prime factors. Then $\mu_{b,D}$ is a spectral measure

• Key point 1: D is a complementing set \pmod{b} , it means D tiles \mathbb{Z}_b , i.e., there exists a $C \subset \mathbb{Z}$ such that

$$D \oplus C \equiv \{0, 1, \cdots, b-1\} \pmod{b}.$$

In this case, $K(b,D\oplus C)$ is a fundamental domain of $\mathbb Z$ and of course it is a tile. Then

$$\mu_{b,D} * \mu_{b,C} = \mathcal{L}_{K(b,D \oplus C)}.$$

• Key point 2: #D has no more than two distinct prime factors. In this case, the Coven-Meyerowitz conjecture is true: tiles D of finite group \mathbb{Z}_b is spectral (Łaba

- (Łaba and Wang, 2002): Let D be a complementing set \pmod{b} with $b \ge 1$. Suppose that #D has no more than two distinct prime factors. Then $\mu_{b,D}$ is a spectral measure
- Key point 1: D is a complementing set \pmod{b} , it means D tiles \mathbb{Z}_b , i.e., there exists a $C \subset \mathbb{Z}$ such that

$$D \oplus C \equiv \{0, 1, \cdots, b-1\} \pmod{b}.$$

In this case, $K(b,D\oplus C)$ is a fundamental domain of $\mathbb Z$ and of course it is a tile. Then

$$\mu_{b,D} * \mu_{b,C} = \mathcal{L}_{K(b,D \oplus C)}.$$

• Key point 2: #D has no more than two distinct prime factors. In this case, the Coven-Meyerowitz conjecture is true: tiles D of finite group \mathbb{Z}_b is spectral (Łaba

- (Łaba and Wang, 2002): Let D be a complementing set \pmod{b} with $b \ge 1$. Suppose that #D has no more than two distinct prime factors. Then $\mu_{b,D}$ is a spectral measure
- Key point 1: D is a complementing set \pmod{b} , it means D tiles \mathbb{Z}_b , i.e., there exists a $C \subset \mathbb{Z}$ such that

$$D \oplus C \equiv \{0, 1, \cdots, b-1\} \pmod{b}.$$

In this case, $K(b,D\oplus C)$ is a fundamental domain of $\mathbb Z$ and of course it is a tile. Then

$$\mu_{b,D} * \mu_{b,C} = \mathcal{L}_{K(b,D \oplus C)}.$$

• Key point 2: #D has no more than two distinct prime factors. In this case, the Coven-Meyerowitz conjecture is true: tiles D of finite group \mathbb{Z}_b is spectral (Łaba).

• We say K(b,D) weakly tiles a self-similar set if there is a $C\subset \mathbb{Z}$ such that $K(b,D\oplus C)$ forms a self-similar tile.

Theorem (A. and He, preprint)

Suppose that the C-M conjecture is true and K(b,D) weakly tiles a self-similar set, then $\mu_{b,D}$ is a spectral measure.

- For which pair (b, D), K(b, D) can weakly tile a self-similar set?
- D tiles \mathbb{Z}_b

• We say K(b,D) weakly tiles a self-similar set if there is a $C\subset \mathbb{Z}$ such that $K(b,D\oplus C)$ forms a self-similar tile.

Theorem (A. and He, preprint)

Suppose that the C-M conjecture is true and K(b,D) weakly tiles a self-similar set, then $\mu_{b,D}$ is a spectral measure.

- For which pair (b, D), K(b, D) can weakly tile a self-similar set?
- \bullet D tiles \mathbb{Z}_b

• We say K(b,D) weakly tiles a self-similar set if there is a $C\subset \mathbb{Z}$ such that $K(b,D\oplus C)$ forms a self-similar tile.

Theorem (A. and He, preprint)

Suppose that the C-M conjecture is true and K(b,D) weakly tiles a self-similar set, then $\mu_{b,D}$ is a spectral measure.

- ullet For which pair (b,D), K(b,D) can weakly tile a self-similar set?
- D tiles \mathbb{Z}_b

Answer: : Might NOT!

(1)
$$D = \{0, 1, 32, 33\} = \{0, 1\} + 16\{0, 2\}$$
 tiles \mathbb{Z}_{16^2} , YES

(2)
$$\widetilde{D} = \{0, 1, 16, 17\} = \{0, 1\} + 16\{0, 1\}$$
 tiles \mathbb{Z}_{16^2} , NO

• Denote $D_{b,k} = D + bD + \cdots + b^{k-1}D$, then

$$K(b, D) = \sum_{k=1}^{\infty} b^{-k} D = K(b^k, D_{b,k}).$$

• each $D \oplus 16D$ tiles \mathbb{Z} , and so is $D \oplus \cdots \oplus 16^{k-1}D$ for each $k \geq 1$. but $\widetilde{D} + 16\widetilde{D}$ is not a direct summand.

Answer: : Might NOT!

(1)
$$D = \{0, 1, 32, 33\} = \{0, 1\} + 16\{0, 2\}$$
 tiles \mathbb{Z}_{16^2} , YES.

(2)
$$\widetilde{D}=\{0,1,16,17\}=\{0,1\}+16\{0,1\}$$
 tiles \mathbb{Z}_{16^2} , NO;

• Denote $D_{b,k} = D + bD + \cdots + b^{k-1}D$, then

$$K(b,D) = \sum_{k=1}^{\infty} b^{-k} D = K(b^k, D_{b,k}).$$

• each $D \oplus 16D$ tiles \mathbb{Z} , and so is $D \oplus \cdots \oplus 16^{k-1}D$ for each $k \geq 1$, but $\widetilde{D} + 16\widetilde{D}$ is not a direct summand.

Answer: : Might NOT!

(1)
$$D = \{0, 1, 32, 33\} = \{0, 1\} + 16\{0, 2\}$$
 tiles \mathbb{Z}_{16^2} , YES.

(2)
$$\widetilde{D} = \{0, 1, 16, 17\} = \{0, 1\} + 16\{0, 1\}$$
 tiles \mathbb{Z}_{16^2} , NO;

• Denote $D_{b,k} = D + bD + \cdots + b^{k-1}D$, then

$$K(b,D) = \sum_{k=1}^{\infty} b^{-k} D = K(b^k, D_{b,k}).$$

• each $D \oplus 16D$ tiles \mathbb{Z} , and so is $D \oplus \cdots \oplus 16^{k-1}D$ for each $k \geq 1$. but $\widetilde{D} + 16\widetilde{D}$ is not a direct summand.

Answer: : Might NOT!

(1)
$$D = \{0, 1, 32, 33\} = \{0, 1\} + 16\{0, 2\}$$
 tiles \mathbb{Z}_{16^2} , YES.

(2)
$$\widetilde{D}=\{0,1,16,17\}=\{0,1\}+16\{0,1\}$$
 tiles $\mathbb{Z}_{16^2},$ NO;

• Denote $D_{b,k} = D + bD + \cdots + b^{k-1}D$, then

$$K(b,D) = \sum_{k=1}^{\infty} b^{-k} D = K(b^k, D_{b,k}).$$

• each $D \oplus 16D$ tiles \mathbb{Z} , and so is $D \oplus \cdots \oplus 16^{k-1}D$ for each $k \geq 1$. but $\widetilde{D} + 16\widetilde{D}$ is not a direct summand.

• Suppose $D \subset \mathbb{Z}$, we call D an iterated integer tile with respect to b if for each $k \geq 1$, the sum

$$D_{b,k} := D + bD + \dots + b^{k-1}D$$

is direct and tiles \mathbb{Z} .

Theorem (A. and He, preprint)

T(b,D) weakly tiles a self-similar set if and only if D is an iterated integer tile with respect to b

Some remarks

- If D tiles \mathbb{Z}_b , then it is an iterated integer tile with respect to b.
- D is an integer tile and the sum in $D_{b,k}$ is direct # each $D_{b,k}$ is an integer tile e.g. $b=3, D=\{0,1\}$ $(\frac{1}{3}-{\sf Cantor\ measure\ }\mu_{b,\{0,1\}}).$

• Suppose $D \subset \mathbb{Z}$, we call D an iterated integer tile with respect to b if for each $k \geq 1$, the sum

$$D_{b,k} := D + bD + \dots + b^{k-1}D$$

is direct and tiles \mathbb{Z} .

Theorem (A. and He, preprint)

T(b,D) weakly tiles a self-similar set if and only if D is an iterated integer tile with respect to b

Some remarks:

- If D tiles \mathbb{Z}_b , then it is an iterated integer tile with respect to b.
- D is an integer tile and the sum in $D_{b,k}$ is direct # each $D_{b,k}$ is an integer tile e.g. $b=3, D=\{0,1\}$ $(\frac{1}{2}-{\sf Cantor\ measure\ }\mu_{b,\{0,1\}}).$

• Suppose $D \subset \mathbb{Z}$, we call D an iterated integer tile with respect to b if for each $k \geq 1$, the sum

$$D_{b,k} := D + bD + \dots + b^{k-1}D$$

is direct and tiles \mathbb{Z} .

Theorem (A. and He, preprint)

T(b,D) weakly tiles a self-similar set if and only if D is an iterated integer tile with respect to b

Some remarks:

- If D tiles \mathbb{Z}_b , then it is an iterated integer tile with respect to b.
- D is an integer tile and the sum in $D_{b,k}$ is direct # each $D_{b,k}$ is an integer tile e.g. $b=3, D=\{0,1\}$ $(\frac{1}{3}$ -Cantor measure $\mu_{b,\{0,1\}})$.

$Spectral \Rightarrow Tile$

- (Łaba and Wang, 2002) conjecture that: For any integer-pair (b, D), if $\mu_{b,D}$ is spectral, then D is an integer tile.
- Recall that

$$\mu_{b,D} = \delta_{b^{-1}D} * \delta_{b^{-2}D} * \delta_{b^{-3}D} * \cdots$$

$$= \delta_{b^{-k}(D+bD+\cdots+b^{k-1}D)} * \delta_{b^{-2k}(D+bD+\cdots+b^{k-1}D)}$$

$$= \mu_{b^k,D_{b,k}}$$

• Łaba-Wang conjecture: if $\mu_{b,D}$ is spectral, then D is an iterated integer tile. It is still open!

$Spectral \Rightarrow Tile$

- (Łaba and Wang, 2002) conjecture that: For any integer-pair (b, D), if $\mu_{b,D}$ is spectral, then D is an integer tile.
- Recall that

$$\mu_{b,D} = \delta_{b^{-1}D} * \delta_{b^{-2}D} * \delta_{b^{-3}D} * \cdots$$

$$= \delta_{b^{-k}(D+bD+\cdots+b^{k-1}D)} * \delta_{b^{-2k}(D+bD+\cdots+b^{k-1}D)}$$

$$= \mu_{b^k,D_{b,k}}$$

• Łaba-Wang conjecture: if $\mu_{b,D}$ is spectral, then D is an iterated integer tile. It is still open!

$Spectral \Rightarrow Tile$

- (Łaba and Wang, 2002) conjecture that: For any integer-pair (b, D), if $\mu_{b,D}$ is spectral, then D is an integer tile.
- Recall that

$$\mu_{b,D} = \delta_{b^{-1}D} * \delta_{b^{-2}D} * \delta_{b^{-3}D} * \cdots$$

$$= \delta_{b^{-k}(D+bD+\cdots+b^{k-1}D)} * \delta_{b^{-2k}(D+bD+\cdots+b^{k-1}D)}$$

$$= \mu_{b^k,D_{b,k}}$$

• Łaba-Wang conjecture: if $\mu_{b,D}$ is spectral, then D is an iterated integer tile. It is still open!

- Suppose $0 \in \Lambda$ is a spectrum of $\mu_{b,D}$
- The orthogonality implies that $\widehat{\mu}_{b,D}(\lambda)=0$ for any nonzero elements $\lambda\in\Lambda$, that is to say

$$\Lambda \setminus \{0\} \subset \mathcal{Z}(\widehat{\mu}_{b,D}) = \bigcup_{k=1}^{\infty} b^k \mathcal{Z}(\widehat{\delta_D})$$

where $\mathcal{Z}(f):=\{\xi:f(\xi)=0\}.$

Theorem (A. and He, 2025+)

Suppose $D \subset \mathbb{Z}$ with $\mathcal{Z}(\widehat{\delta_D}) \subset \frac{1}{pq}(\mathbb{Z} \setminus \mathbb{Z})$ where p,q are primes, then the following are equivalent: $(1)\mu_{b,D}$ is a spectral measure;

- (2) D is an iterated integer tile;
- (3) K(b, D) can weakly tile a self-similar set.

(the generalized Fuglede's conjecture is true for this measure.)

Structure of the iterated integer tile

Theorem (A. and He, preprint)

T(b,D) weakly tiles a self-similar set if and only if D is an iterated integer tile with respect to b

Question: for which pair (b,D), is T(b,D) a self-similar tile?

The known results

•
$$b = p^{k+1}$$
, p is a prime number

•
$$b = pq$$
, p, q are different prime numbers

•
$$b = p^{\alpha}q$$
, p, q are different prime numbers

Theorem (A. and He, preprint)

T(b,D) weakly tiles a self-similar set if and only if D is an iterated integer tile with respect to b

Question: for which pair (b, D), is T(b, D) a self-similar tile?

The known results

ullet $b=p,\quad p$ is a prime number (Bandt, 1991; Kenyon, 1992)

• $b = p^{k+1}$, p is a prime number (Lagarias and Wang, 1996)

• b = pq, p, q are different prime numbers (Lau and Rao, 2003)

• $b = p^{\alpha}q$, p, q are different prime numbers (Lai, Lau and Rao, 2017)

- (Bandt, 1991): If D is a complete residue set mod b and $\gcd(D)=1$, then K(b,D) is a fundamental domain of \mathbb{Z} ;
- (Odlyzko, 1978; Lagarias and Wang, 1996) Strict product-form: Given $\mathcal{E} = \mathcal{E}_0 \oplus \cdots \oplus \mathcal{E}_k = \{0, 1, \cdots, b-1\},$

$$D = \mathcal{E}_0 \oplus b^{\ell_1} \mathcal{E}_1 \oplus \cdots \oplus b^{\ell_k} \mathcal{E}_k, \quad 0 \le \ell_1 \le \cdots \le \ell_k.$$

In this case,

$$T(b,D) = \sum_{j=1}^{\infty} b^{-j} \Big(\mathcal{E}_0 \oplus b^{\ell_1} \mathcal{E}_1 \oplus \cdots \oplus b^{\ell_k} \mathcal{E}_k \Big)$$
$$= T(b,\mathcal{E}) \oplus \mathcal{A}$$
$$= [0,1] + \mathcal{A}.$$

(International Conference on Tiling and Fourilterated integer tiles and self-similar spectral

Theorem (A. and Lau, 2019)

Suppose $A=pI_2, p$ is prime and $D\subset \mathbb{Z}^2$ with (A,D) is primitive. K(A,D) is a self-similar tile if and only if

$$D = \bigcup_{d \in D_0} \left(d + A^k B_d \right),\,$$

where $k \geq 1$ and $D_0 \oplus B_d$ is a complete residue set modulus A for every $d \in D_0$.

• (Li and Rao, 2025+) named it as skew-product-form digit set with respect to A Suppose $0 \in D \subset \mathbb{Z}$ with #D = b and $\gcd(D) = 1$. Then T(b, D) is a self-similar tile if and only if there is a $k \geq 1$ such that $D_{b,k}$ is a skew-product-form digit set with respect to b.

Theorem (A. and Lau, 2019)

Suppose $A=pI_2, p$ is prime and $D\subset \mathbb{Z}^2$ with (A,D) is primitive. K(A,D) is a self-similar tile if and only if

$$D = \bigcup_{d \in D_0} \left(d + A^k B_d \right),\,$$

where $k \ge 1$ and $D_0 \oplus B_d$ is a complete residue set modulus A for every $d \in D_0$.

• (Li and Rao, 2025+) named it as skew-product-form digit set with respect to A Suppose $0 \in D \subset \mathbb{Z}$ with #D = b and $\gcd(D) = 1$. Then T(b,D) is a self-similar tile if and only if there is a $k \geq 1$ such that $D_{b,k}$ is a skew-product-form digit set with respect to b.

the case $\#D \leq b$

Quasi-product-form digit set with respect to b if

$$D = \bigcup_{a \in A} \left(a + bB_a \right),\,$$

and $A \oplus B_a$ tiles \mathbb{Z}_b .

Theorem (A. and He, preprint)

Suppose $0 \in D \subset \mathbb{Z}$ with $\#D \leq b$ and $\gcd(D) = 1$. Then D is an iterated integer tile w.r.t b if and only if there is a $k \geq 1$ and $\alpha > 0$ such that $\alpha \cdot D_{b,k}$ is a quasi-product-form digit set.

Thank you for your attention!